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PROFILE

SUMMARY

A semiempiricalprofile-correction factor is discussed which enables
the estimation of the wave drag due to thickness at supersonicspeeds
for three-&Lmensionalwings with arbitrq- airfoil section (subjectto
the restrictions of thin-airfoil theory) throu@ use of previously
calculated drag coefficients. Application of the proposed-correction

L factor to the kno~m drag coefficients of some rhcmbic-profilewings -
yielded estimates for the drag coefficients of parabolic-arc-profile
wings that were in g~od agreement with theoretically calculated values.,.

I It is expected that satisfactory estimates can be obtained for many .
combinations of plan form and profile by judicious use of the proposed
profile correction, especially at speeds for which the wing leading edge
is supersonic.

INTRODUCTION
,

A number of papers dealing with the line=ized-theory calculations
of supersonicwave tiag at zero .lif%(that is, drag due to thickness) for
three-tiensional wings have been pubHshed. (See references 1 to 12,
for exsmple.) As a result, extensive theoretical data are available for
the wave-drag coefficient at supersonic flight speeds for wing plan fomns
that have arbitra~ sweepback (or sweepforward),taper ratio,and aspect
ratio. The profiles of these wings, however, are in general restricted
to symmetrical double wedges, rhombuses (symmetricaldouble wedges with
msximum thickness located at .50percent chord), and biconvex sections
composed of two symmetrical parabolic arcs. Other types of thin small-
slope airfoil sections require a great deal of mathematical and compu-
tational labor and have been avoided in the theoretical analyses.
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2 NACA TN 2619

Inasmuch as these other profiles may prove to be of interest
because of structural advantages} low-drag characteristics,~d other b
reasons, it would be desirable to be able to obtati estimates of the
drag for these cases without having to resort to further theoretical
investigations. The purpose of the present paper, therefore~ is to
discuss the application and limitations of some semiempiricalprofile I
correctionswhich will enable the -estimationof the wave-drag coefficient
for three-tiensional tigs with various profiles by utilizing previously
calculated drag coefficients.
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SYMBOLS

free-stream Mach nuniber

Mach number parameter (ml) I

(aspect ratio (Wing span)2/Wing ‘area)

taper ratio (ratio of tip chord to root chord) ~
I

sweep angle of leading edge, degrees

thickness ratio of section in free-stream direction (maximum
thickness of given section profile divided by its chord)

wave-drag coefficient of airfoil section

(

Drag per unit span

)

I
Dynamic pressurex Chord I

wave.tiag coefficient of three-dimensionalwing

( )
Dynamic pres%%x Wing area

~

I
airfoil section I

Use of mibscripts is indicated or explained in text.
1

ANALYSIS k DISCUSSION 1

I

As mentioned in the introduction, the purpose of the present paper
is to discuss some semiempiricalprofile corrections which will enable
the estimation of the wave-drag coefficient for three-dimensionalwings
with small-slope profiles by utilizing previously calculated drag coeffi-
cients● It appears that profile-correction factors that are especially
suitable for supersonic-leading-edgeconditions can be obtained from
available data and formulas without much difficulty.
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For exmnple, suppose the drag coefficient
c%

is desired at a

free-stream Mach number Ml for a wing with aspect ratio Al) taper

rdiO Al, sweepback or sweepforwardof leading edge Al, section

profile Sl, and a constant lhichess ratio (t/c)l along the span. If

the drag coefficient CD of a geometrically similar“wingat the Mach
o

number Ml fith profile so is known (that is, if the drag coefficient

is known for a wing with all characteristics other than the profile s
identical to those of the desired
may be written:

Al Al

Al

(t/c)l

Al

(t/c)l

S1
‘o

wing), then the following expression

Profile-comection factor

where the subscripts outside the parentheses indicate wing characteristics “
and Mach number. In addition to the leading-edge-sweepbackrequirement,
the sweepback of the maximum-thickness line for the two wings should be
as nearly the ssme as available calculations pezmit. Two simple correc-
tion factors suggest themselves; these are stated and discussed in the
following paragraphs.

Consider first a “three-dhensional” correction factor obtained
by forming the ratio of the wave-drag coefficiats of two wings of
equal taper ratio (for example, untapered wings for which X . 1) with
the same aspect ratio, sweepback, and thickness ratio and at the same
Mach number as the desired wing, one unta.peredwing having the desired
profile S1 and the other untapered wing having the profile so;

that is, fomn the ratio

0

%
q

. The reason

OM1,Al,Al,(t/c) 1,X=1

the X = 1 case was chosen is that fairly canplete theoretical data
exist for both the symmetricalparabolic-arc-profile and the symmetrical
double-wedge-profileuntapered wings. This approximationwas suggested
to the author of reference 9 and was applied in that paper to compare
the calculated value (based on a theoretical analysis) for the parabolic-

1’ arc-profile tapered

by using previously.

\

wing with the approximate value of
c%

ob~ained

known data for CD (from reference 6),
o

.
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(’Jc (from reference 8), and CDO ~1 (from reference 5).
X=l ()-

Excelient agreement was obtained for the cases considered. .
This factor

can be considered as essentially correcting for taper ratio, since the
untapered-wing value for the profile under considerationmust be knti.m.
By rewriting the preceding equation with the correction factor inserted,
this point csnbe clearly illustrated:

Inamnuch as only the symmetd-cal double-wedge, rhonibic,and symmetrical
parabolic-arc sections have been treated in detail for untapered three-
dimensionsltings, and since even less detailed calculations are avail-
able for tapered plan forms, the use of this type of correction factor
is very 13mited and restricted. ‘Also,because most of the theoretical
solutions are based on linearized theory, such solutions for the double-
wedge- and rhombic-profilewings exhibit an additional “drag peak” I

(in violation of the small-perturbationassumptions of the linear theory) I
whenever the Mach number is such that the Mach lines parallel the

.

maximum-thickness ridge line. (This condition is termed a sonic line of
msx- thiclmess since the free-stresm flow ccmponent nomnal to that
line is sonic.) Hence, good agreement @th experiment or with more exact *
calculationswould not be expected at or near Mach numbers for which
this condition is present. It might be added that equally erroneous
drag peaks result from using linear theory whenever a line co~ecting
the points of appreciable wingyslope discontinuitiesbecomes sonic.

For example, the biconvex-, rhombic-, and dmible-wedge-profilewings all
exhibit drag peaks at Mach numbers for which the leading and trailing
edges become sonic; hence linearized-theory calculations, or approxi-
mations involving the use of such calculations, at or near these Mach
numbers should not be expected to a&ee with more exact calculations or
experiment, although any appro-tions so obtained would probably be
consistent with linear-theory estimstes. The three-dhensional profile-
correction factor is thus seen to be tipractical for application to
arbitrary profiles because (1) limited types of profile - plan-fomn com-
binations were treated in the previous three-dhensional drag analyses
and hence there are insufficient calculations or formulas, or both, avail-
able and (2) drag peaks associated with linearized-theorycalculations
would lessen the accuracy of the approximation for certain ranges of
Mach number..

.
A correction factor whfch is more general in application than the

three-dimensional correction factor is that based on the ratio of the
drag coefficients for two-dimensional airfoils. These coefficients

,

(based on Busemann or Ackeret approximations) are readily available for
many airfoil shapes and in sny case are easily obtainable for thin profiles 5
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of arbitrary shape. (For exsmple, see formulas in section V of refer-
ence 13. ) Find the section wave-drag coefficient cd for the profile sl

and the sectioriwave-drag coefficient for the profile SO; then form the

following profile~correction factor

,[1()cd s
,.

1

()
cd s

O Two&mensional flow

An expression relating the drag coefficient of the desired wing C
/ %

to known coefficients can then be written as follows:

H H~(4s
C%Ml = pDo)M1 (v (1)

d % Two=dimensiond flow

‘1 ‘o
.

#

where the subscripts outside the parentheses or brackets indicate, as
before, the wing or section characteristicsand Mach number.’ (It is
interesting to note that an application of the above correction factor
for some wings’of arrowhead plan form with biconvex profile may be found
on page 21 of reference 14.) Of course, this type of correction factor
cannot be expected to render as reliable an approximation for a wing
with the leading edge swept behind the foremost Mach cone (subsonic leading
edge) as for a wing with the leading edge protruding from the foremost
Mach cone (s~ersonic leading edge).

This correction factor was,used to estimate the drag coefficient
for an infinite series of wings with the following characteristics:
L = 0.531, AB = 4.6s, B cot A = 1.375, snd biconwx profile canposed of
two symmetrical parabolic arcs. A value of CD for a family of wings

o
that was geometrically similar but had rhombic airfoil sections was
obtained from reference 6. Application of equation (1) yielded the
following result: CD= 4.~(t/C)2 COt A. This value compares excellently
with the theoretically calculated value of 4.86(t/c)2 cot L (see refer-
ence 9). TMS remarkable agreement will, of course, not be true in

general, but reasonable estimates should be obtained for most roses where
there are no fictitious drag peaks associated with linearized-theory
inaccuracies. Fairly gaod approximationsmay especially be expected at
speeds for which the wing leading edge is supersonic.

,- -- . -. .—.—. . - - . —.. .— .- —.—- -- --——..— -— - . --.—— .- — —-——— -- .-----— -.
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I’nthis connection, some discussion of the results obtained in
reference 10 would be appropriate. Figure 14 of that paper presents the
ratio of wave-drag coefficients for two wings of equal thiclmess ratio
plotted against a generalizedMach nmber - sweepback parameter, one
wing having the biconvex profile mentioned in the previous example and
the other a rhombic profile. The curves of figure 14 show the ratio
(based on three-dimensionalanalyses for the wings considered) to vary
from approximately 1 to 1.5. On the basis of the profile-correction
factor proposed in the present paper, the estimated ratio wou.ldbe 1.33
for the entire Mach number - sweepback range. The estimated value for
the entire range thus appears to be fairly satisfactory,-especially when
the magnitude of the wave-drag coefficients is considered. However, a
closer examination of the results (see fig. 12 of reference 10) will show
that the portions of the curves that deviate most from the value 1.33 are
largely hfluencedby the erroneous drag peaks that are inherent in the
linearized-theorytreatment for the rhotiic-profile wing. These regions
should, of course, be excluded from considerationas previously discussed.
‘Therefore,the estimated factor of 1.33 appears even more satisfactory.
Although the types of sections considered h the previous examples are
restricted to biconvex and rhombic profiles, the results are applicable
to a considerable variety of wing plan forms: rectangular, triangular,
arrowhead, sweptback, and sweptforward wings of ‘arbitraryt~er ratio
(conventional)with stresmwise tips. Reasonable estimates of the drag
are obtatied even for wings that are swept well behind the foremost
Mach cone, although no generalization canbe made regarding this agreement.
However, inasmuch as the slope of the airfoil surface must be small every-
where it appears that reasomible estimates of the wave-drag coefficient
should also be expected for other permissible profiles - especially at
speeds for which the @g leading edge is supersonic.

In connection with the previous discussion relating to the erroneous
drag peaks, it is quite interesting to note that if the value of CD1
for a rhonibic-profilewing is obtainedby using the value of CDO for

the parabolic-arc-profilewing at a speed range for which the maximum-
thiclmess line is near-sonic (Mach lines parallel the maximum-thickness
ridge line), a lower est~te for CD1 is obtained than,is calculated

by linearized theory. The lower value would agree better with experi-
mental results. This agreement is due, of cowse, to the fact that the
effect of the fictitious drag peak associated with the theoretical
solution for the rhombic-profilewing is eliminated by using the correction
factor in this manner.

In addition to the limitations on Mach nuniberresulting from near-
sonic- or sonic-edge conditions and the degree of applicability for wings
with mibsonic leading edges, the usual restrictions of linearized three-
dimensional drag analyses are applicable. Regarding the geometric
similarity of the two plan forms, the sweepback of the maximum-thickness

.

I

.
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.

line should be as nearly the same for the two wings as available calcu-
lations permit. (The leading-edge sweepback is the.same for both wings,
as indicated in equation (l).) The proposed correction factor shou.ldj
of course, be applied only to wings with section profiles that satis~
the thin-airfoil restriction that the slope be small everywhere on the
surface.

CONCLUDING REMARKS

A semierapiricalprofile-correction factor is discussed which enables
the estimation of the wave drag due to thickness at supersonic speeds
for three-dimensionalwings with arbitrary airfoil section (subject to
the restrictions of thin-airfoil theory) through use of previously calcu-
lated drag coefficients. It is felt that judicious use of the correction
factor should yield satisfactoryaccuracy for many plan-for-m- profile
conibinations,especially at speeds for which the tig leading edge is
supersonic. Application of the proposed correction factor to experhentally
determined three-dimensional drag coefficientspresents itself as an
interestingpossibility.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Lsngley Field, Vs., July 31, 1951
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